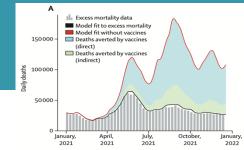

Variation in response to SARS-CoV-2 vaccines in Health Care Workers and people with Immune-mediated diseases

> Dermot P.B. McGovern Director, Precision Health Cedars-Sinai Medical Center

cedars-sinai.org

Anti-SARS-CoV-2 Vaccines


Overall Cases / Deaths

_ Globally: ≻6M / 524 M

US: >83M / >1 M

Vaccines against SARS-CoV-2

- Prevent infection (humoral)
- Prevent severe disease and death (cellular immunity)

'we estimated that
vaccinations prevented
...... 19.8 million deaths
from COVID-19'

Cedars Sinai

https://commons.wikimedia.org/wiki/File:SARS-CoV-2_virion_animation.gif Hadi Y, et al APT 2022 Watson et al. , Lancet Infectious Diseases, June 2022

Original research

BMJ Open Demographic and clinical characteristics associated with variations in antibody response to BNT162b2 COVID-19 vaccination among healthcare workers at an academic medical centre: a longitudinal cohort analysis

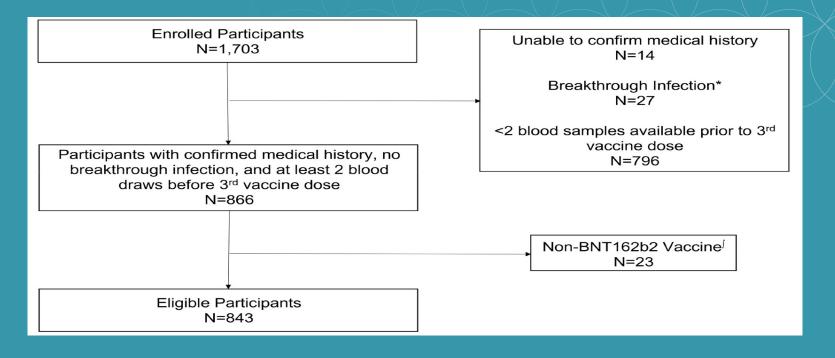
Aim

To improve understanding of longitudinal immune responses following initial SARS-CoV-2 Vaccination

Overview of Study Design I

- Academic Medical Center (C\$MC
- Longitudinal Study of Healthcare Workers (HCW) who received 2 doses of Pfizer-BioNTech (BNT162b2) mRNA vaccine
- Questionnaires about medical history & exposure risk
- Dx of COVID-19 based on:
 - History
 - Medical Records
 - Raised IgG(N)

Overview of Study Design II


Exclusion Criteria

- Received other vaccines
- COVID-19 status not confirmed
- Developed breakthrough infections
- Non-compliant with protocol
- Serology measured with Abbott SARS-Cov-2 IgG assays for both Spike (S) and Nucleocaspid (N) proteins.
 - Dose 1 and dose 2,
 - Weeks 8, 16, 24, 32, and 40
- IgG (N) signal to cut off (S/C) Index of ≥ 1.4 evidence of previous infection

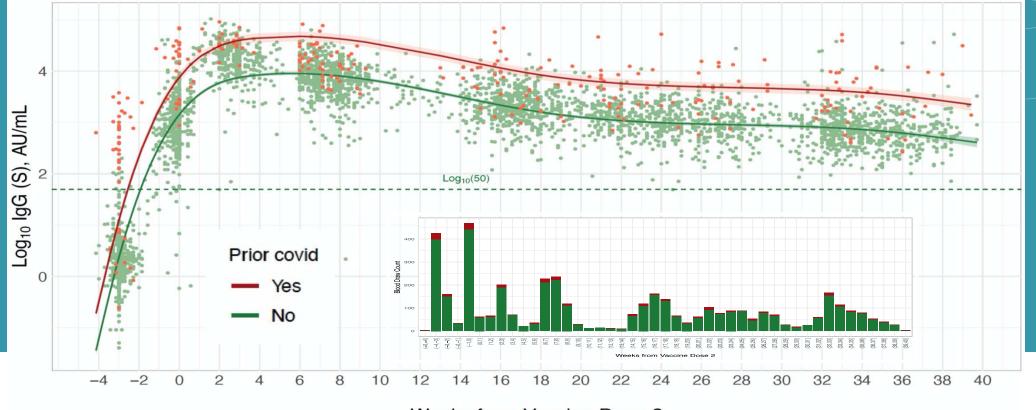
- Statistical Analyses
 - / Standard Approaches
 - Differences in variances & Kruskall-Wallis
 for continuous variables
 - X² for Categorical Variables
 - Mixed Effects for Longitudinal
 - Analyses adjusted for age, sex, self-identified
 race and ethnicity, obesity, hypertension, &
 Charlson Co-morbidity Index

Results I

*Breakthrough cases defined as $IgG(N) \ge 1.4$ when measured after receiving 2 mRNA vaccine doses and prior to a 3rd dose, with prior IgG(N) < 0.4 or no history of prior COVID-19 infection.

¹Participants who received any vaccine other than BNT162b2.

		No prior	Prior	/
	Total sample	SARS-CoV-2 infection		P valu
n	843	784	59	
Age in years, median (IQR)	41.66 (35.19, 52.80)	41.89 (35.25, 53.00)	38.72 (34.93, 49.31)	0.169
Age in years (range)	20.37-87.26	20.37-87.26	23.52-76.87	
Male sex, n (%)	256 (30.4)	239 (30.5)	17 <mark>(</mark> 28.8)	0.903
Non-white race, n (%)	405 (48.0)	372 (47.4)	33 (55.9)	0.262
Hispanic ethnicity, n (%)	86 (10.2)	73 (9.3)	13 (22.0)	0.004
Obesity, n (%)	103 (12.2)	92 (11.7)	11 (18.6)	0.175
Hypertension, n (%)	128 (15.2)	122 (15.6)	6 (10.2)	0.355
Charlson Comorbidity Index, median (IQR)†	0.00 (0.00, 1.00)	0.00 (0.00, 1.00)	0.00 (0.00, 1.00)	0.572
Work environment‡				
ICU, COVID-19 unit	135 (16.1)	126 (16.2)	9 (15.3)	1.00
ICU, non-COVID-19 unit	133 (15.9)	129 (16.5)	4 (6.8)	0.073
Ward, COVID-19 unit	160 (19.1)	141 (18.1)	19 (32.2)	0.013
Ward, non-COVID-19 unit	204 (24.3)	193 (24.7)	11 (18.6)	0.37
Emergency department /urgent care	98 (11.7)	94 (12.1)	4 (6.8)	0.315
Outpatient clinic	215 (25.6)	206 (26.4)	9 (15.3)	0.082
Office	129 (15.4)	119 (15.3)	10 (16.9)	0.873
Work from home	61 (7.3)	57 (7.3)	4 (6.8)	1.00
Other	185 (22.1)	177 (22.7)	8 (13.6)	0.142
Unknown	74 (8.8)	71 (9.1)	3 (5.1)	0.423



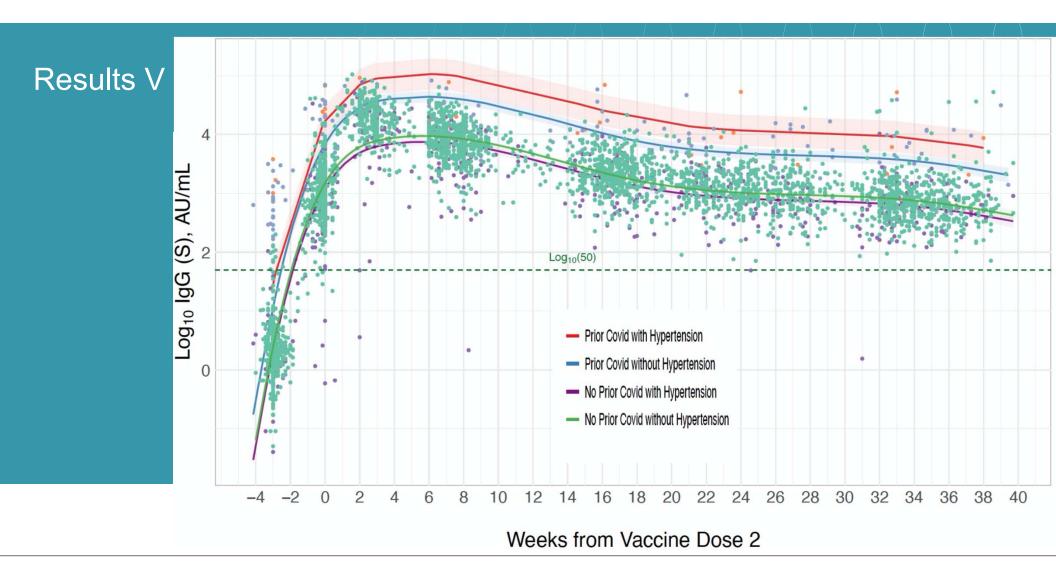
Cedars Sinci Ebinger JE, *et al. BMJ Open* 2022;12:e059994. doi:10.1136/bmjopen-2021-059994

*P value comparing those with versus without prior SARS-CoV-2 infection.

†The Charlson Comorbidity Index weights the clinical conditions into a single score to predict 10-year survival: age, myocardial infarction, The Charson controllary index weights the contract conductors into a single score to predict to -predict to -predi

Results III

Weeks from Vaccine Dose 2


Table 2Clinical and demographic correlates of longitudinal
anti-spike IgG antibody response following complete initial
mRNA vaccination

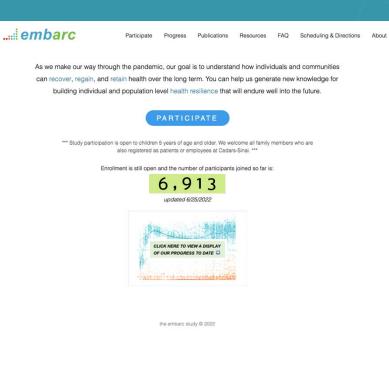
	Beta*	SE	P value	Partial R ²
Prior SARS-CoV-2 infection	1.74	0.11	<0.001	0.134
Age (year)	-0.01	0.00	<0.001	0.016
Male sex	-0.27	0.06	<0.001	0.013
Non-white race	-0.00	0.06	0.99	0.000
Hispanic ethnicity	0.02	0.10	0.80	0.000
Obesity	0.03	0.09	0.77	0.000
Hypertension	-0.17	0.08	0.041	0.003
Charlson Comorbidity Index	-0.02	0.03	0.56	0.000

Results IV

*Beta values represent increase in 1 SD of log(10)IgG-S level per presence (vs absence) of a categorical variable or per unit increment of continuous variable.

Strengths/Limitations

- BNT162b2 vaccine only
- High # of subjects excluded but missing had similar characteristics
- Assessment of humoral, but not T-cell mediated responses
- HCW cohort ? Generalizability Age, co-morbidities etc
- Some diversity in cohort more work needed
- Generalizability with newer VOCs

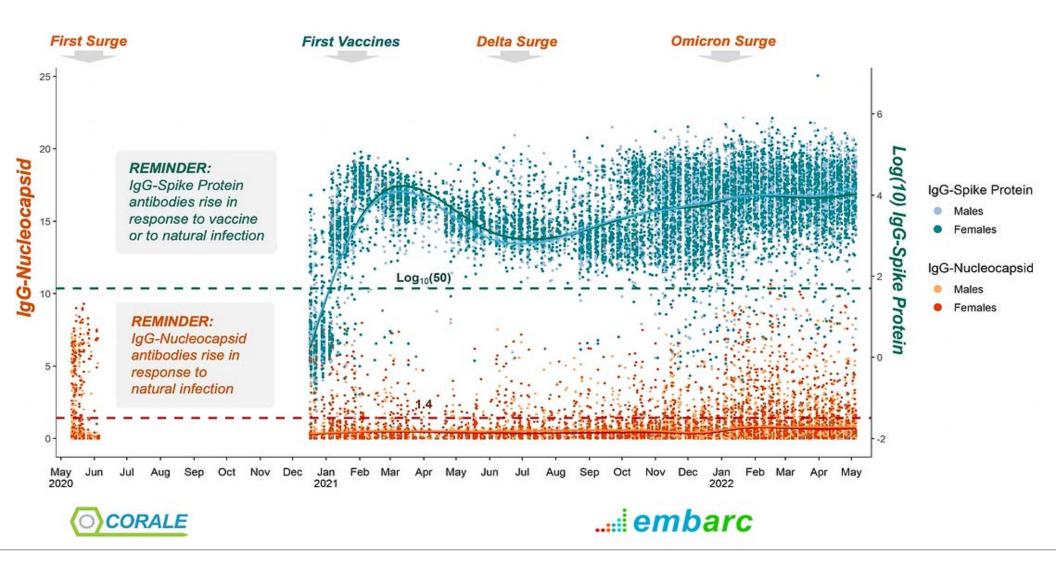

Summary

- Vast majority of adults maintain 'good' IgG-S levels @ 40 weeks post vaccination.
 - Levels peak at 2-8 weeks after vaccine and decline slowly to 40 weeks
- Primary differentiator of vaccine response was prior Covid infection
- Elevated humoral response seen in females, younger age & absence of hypertension
- 'Hybrid' immunity benefit persists over duration of study
- Effects of hypertension are 'reversed'
 - High BP overall lower antibody response

- prior-infection group - higher antibody response

What are we doing to address these limitations?

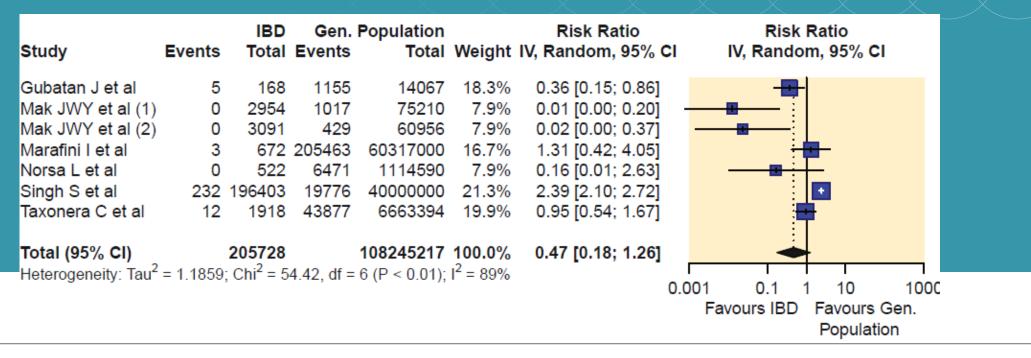
Race/Ethnicity	N (%)	Organ transplant	N (%)
American Indian/ Alaska Native	9 (0.1)	Current/Past	279 (4.6)
Asian	706 (11.6)	Heart Kidney	118 (1.9) 136 (2.1)
Hispanic	595 (9.8)	Liver	41 (0.7)
Native Hawaiian/Pacific Islander	45 (0.7)	Lung	10 (0.2)
Non-Hispanic White	3906 (64.0)	Other	27 (0.4)
Non-Hispanic Black	263 (4.3)	Never	4418 (72.4)
Multiple	170 (2.8)	Cancer	N (%)
Other	115 (1.9)	Current/Past Breast	877 (14.4) 230 (3.9)
Unknown	293 (4.8)	Prostate	105 (1.8)
		Melanoma	140 (2.3)
Autoimmune Disease	N (%)	Lung	24 (0.4)
Current/Past	977 (16.0)	Liver Colon	20 (0.3) 38 (0.6)
Never	3913 (64.1)	Other	452 (7.5)
Unknown	1212 (19.9)	Never	3839 (62.9)
L	,		


www.embarc-study.org

Vaccination History

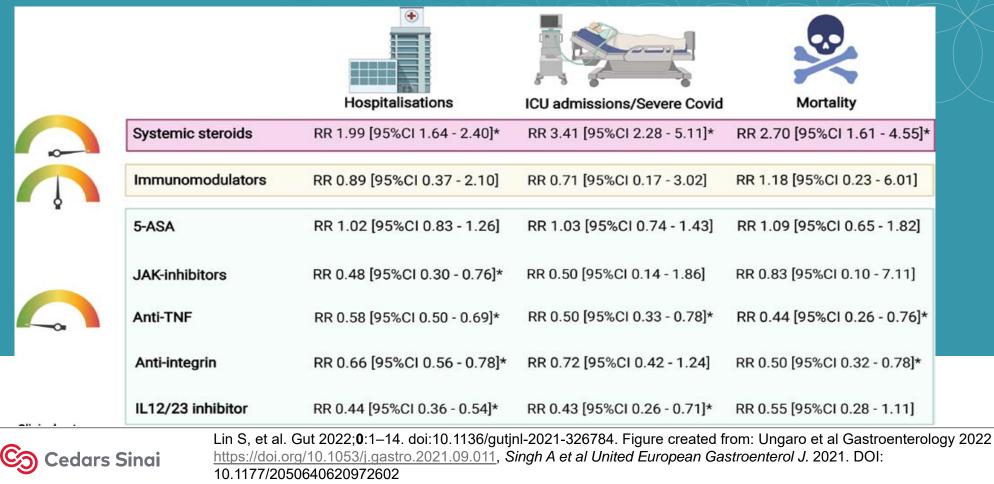
Combinations of vaccine types	N (%)
3 Pfizer	2121 (34.8)
3 Moderna	894 (14.7)
2 Pfizer	714 (11.7)
2 Moderna	415 (6.8)
4 Pfizer	397 (6.5)
Unknown	335 (5.5)
4 Moderna	307 (5.0)
2 Pfizer + 1 Moderna	179 (2.9)
1 Johnson	128 (2.1)
3 Pfizer + 1 Moderna	110 (1.8)
1 Pfizer + 2 Moderna	102 (1.7)
1 Moderna + 1 Johnson	77 (1.3)
1 Pfizer + 1 Johnson	54 (0.9)

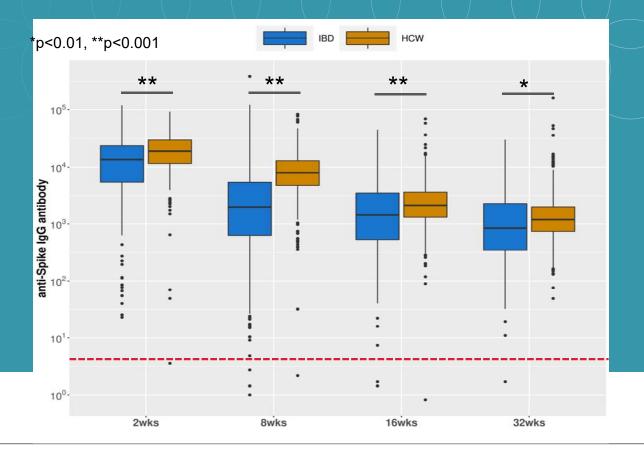
Combinations of vaccine types	N (%)
2 Pfizer + 2 Moderna	42 (0.7)
1 Pfizer + 3 Moderna	35 (0.6)
2 Johnson	31 (0.5)
1 Pfizer	29 (0.5)
2 Pfizer + 1 Johnson	24 (0.4)
2 Moderna + 1 Johnson	23 (0.4)
1 Moderna	17 (0.3)
1 Pfizer + 1 Moderna + 1 Johnson	11 (0.2)
2 Pfizer + 1 Moderna + 1 Johnson	8 (0.1)
1 Pfizer + 1 Moderna	7 (0.1)
3 Moderna + 1 Johnson	6 (0.1)
1 Pfizer + 2 Moderna + 1 Johnson	5 (0.1)
Other combinations	31 (5.0)



COVID-19 and vaccine responses in IBD What do we know?

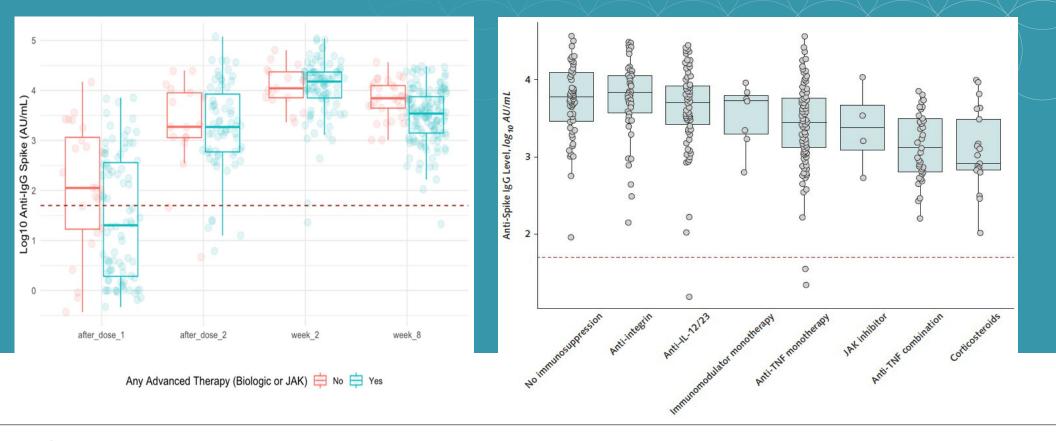
Prior to vaccination risk of SARS-CoV-2 infection no different from the general population


Systematic review and meta-analysis

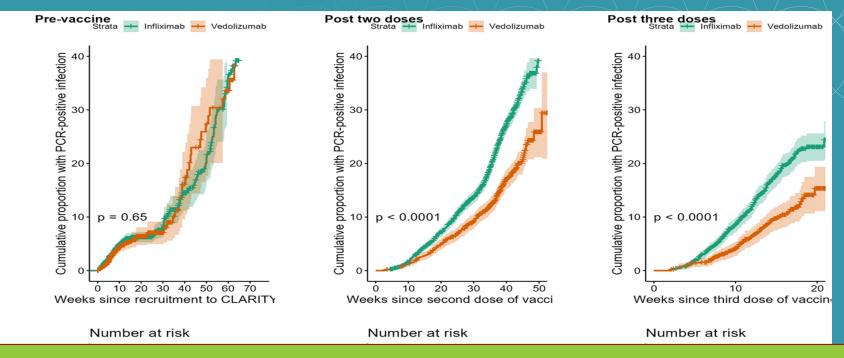

Singh A et al United European Gastroenterol J. 2021. DOI: 10.1177/2050640620972602

Prior to vaccination steroids associated with adverse COVID-19 outcomes

'S' Antibodies are lower in IBD at each timepoint


- IBD had lower antibody levels than HCW at every timepoint (2w, 8w, 16w, 32w)
- Antibodies decreased after 2w in everyone
- >99% antibodies above
 "positive" threshold of 50 AU

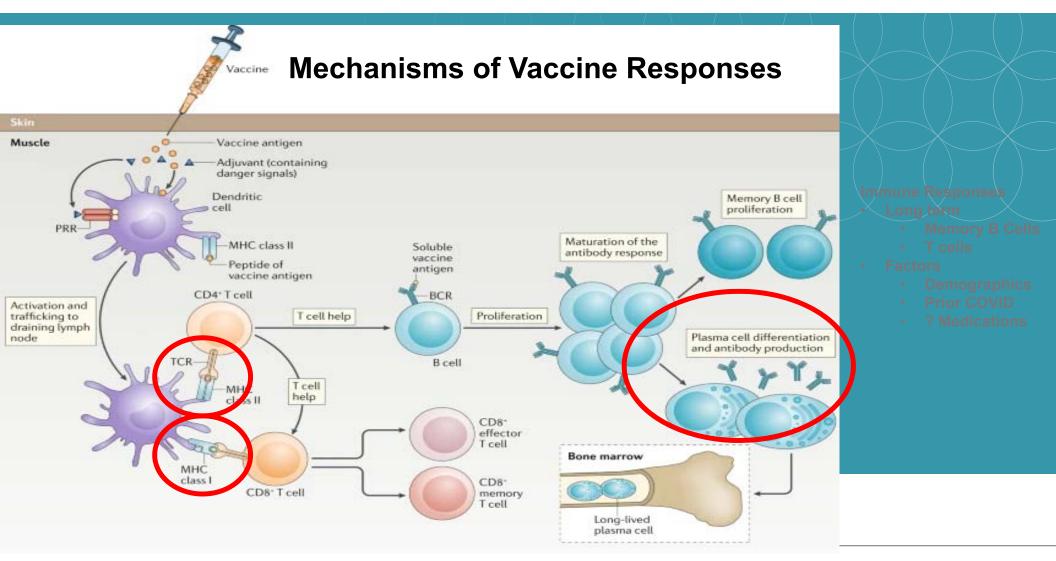
Melmed et al., Presented at DDW May 2022


Robust Antibody Responses after mRNA vaccination in IBD

Cedars Sinai

Melmed, Botwin, Sobhani, Li, Prostko, Figueiredo, Cheng, Braun, McGovern. Annals Internal Medicine. (Oct, 2021)

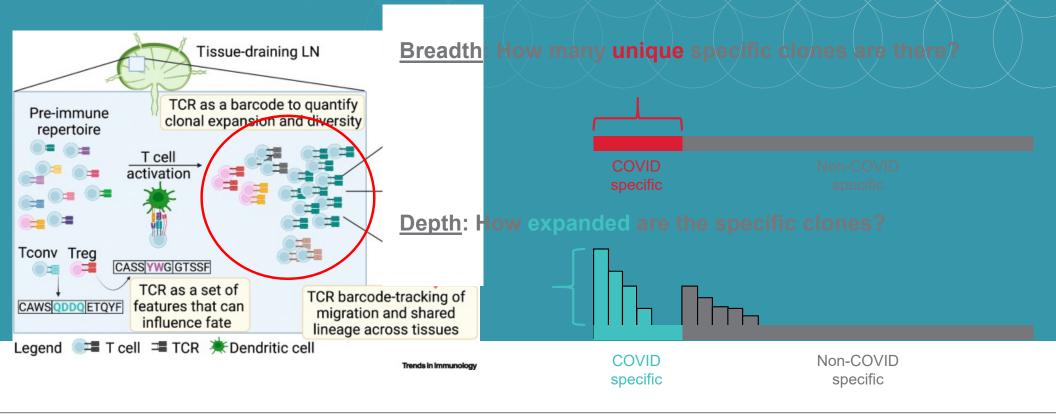
Time to PCR-confirmed SARS-CoV-2 breakthrough infection after 2&3 doses is shorter in infliximab-treated patients


Anti-S antibody concentration is not associated with shorter time to breakthrough infection

Weeks since recruitment to CLA

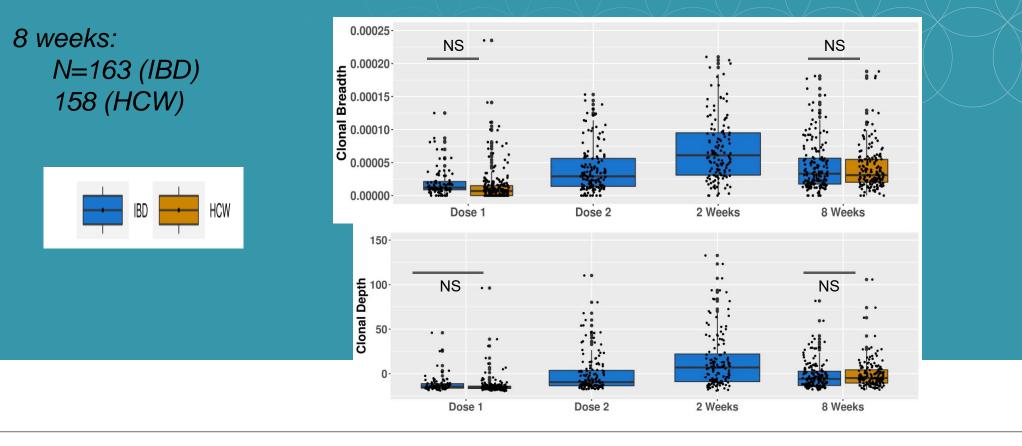
Cedars Sinai

CLARITY study unpublished presented at British Society of Gastro

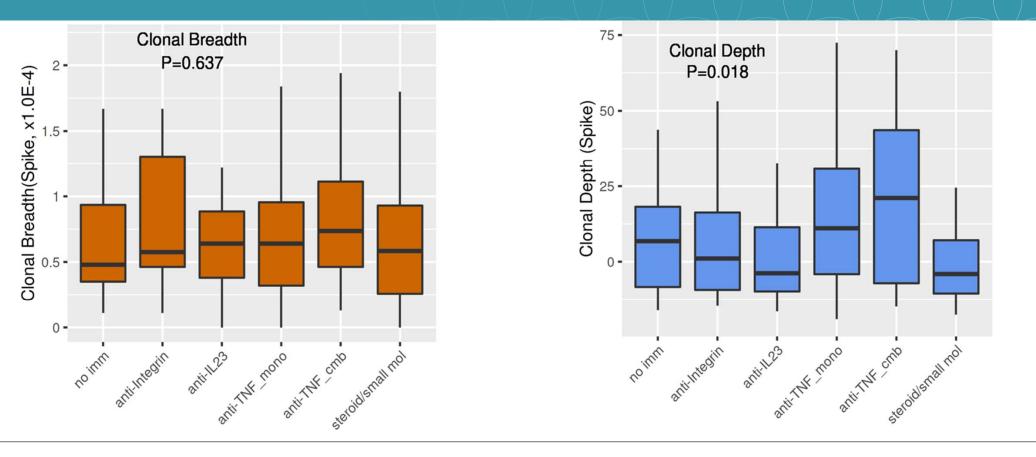

SINCE THILD DOSE OF

Cedars Sinai

Pollard and Bijker. A Guide to Vaccinology. Nature Rev Imm Dec 2020


T-Cell clonal expansion – Breadth and Depth

Pauken et al. TCR sequencing: Barcodes and Beyond. Trends in Immunology. March 2022


No Difference in TCR breadth and depth between IBD and HCW

Melmed et al; Presented at DDW, May 2022

Anti-TNF treatment is associated with clonal depth

Melmed et al; Presented at DDW, May 2022

Summary

- Vaccines protect against symptomatic disease, hospitalizations and death in IBD patients. However not all patients are vaccinated.
- anti-TNFs are associated with attenuated antibody responses, breakthrough and re-infections. In the setting of novel VOCs, this might translate to an increased risk of COVID-19.
- In patients treated with anti-TNF therapy additional doses should be considered every 4 to 6 months.
- IBD patients do not show increased risk of adverse reactions to SARS-CoV2 vaccines (data not shown)

It takes a village!

Translational Gil Melmed Jon Braun Dermot McGovern Gislaine Martins Emebet Mengesha Ashley Porter Phillip Debbas Angela Mujukian Valeriya Pozdnyakova Jennifer Davis Mary Hanna Justina Ibrahim Danny Gonzalez Alyssa Parry Data and Analytics Greg Botwin		Laboratory Services Kimia Sobhani Corale study group Susan Cheng Joseph Ebinger Sandy Joung Amy Hoang Tim Wynter Cancer Research Jane Figueiredo Noah Merin Akil Merchant Karen Reckamp Proteomics Jenny van Eyk Justyna Fert-Bober Biomedical Sciences	Collaborators / ContributorsAtlanta Gastroenterolog/ Associates (Doug Wolf)Banner Health (Rashmi Kumar)Baylor College of Medicine (Jason Hou)Beth Israel Deaconess (Adam Cherietz)Capitol Digestive Care, D.C. (Erica Cohen)Children's Hospital Orange County (Keren Appel)Dartmouth-Hitchcock Medical Center (Corey Siegel)Gastro-One, Memphis TN (Ziad Younes)Johns Hopkins IBD Center (Aline Charabaty, Mark Lazarev)Mayo Clinic (Laura Raffals)Medstar Georgetown (Mark Mattar)Temple University (Adam Ehrlich)Oregon Clinic (Donald Lum, Rebecca Fausel, Swapna Reddy)Saratoga Schenectady GI (Arthur Ostrov, Mark Metwally)Sutter Health (Ryan McConnell)University of California, Irvine (Nimisha Parekh)University of California, San Diego (Brigid Boland)
Dalin Li Talin Haritunians Shaoang Yang	Melissa Hampton Elizabeth Khanishian Shane White Cindy Zamudio	Helen Goodridge Ctr for Rheumatology Attune Health Adaptive Biotechnologies Abbott Labs	University of Chicago (David Rubin) University of Miami (Oriana Damas) University of Southern California (Sarah Sheibani) University of Texas Southwestern (David Fudman)
Cedars Sir	nai		University of Utah (Ann Flynn, John Valentine) University of Washington (Scott Lee) Virginia Mason (Michael Chiorean)

DISCLOSURES

•GYM has consulted for AbbVie, Arena Pharmaceuticals, Boehringer-Ingelheim, Bristol-Meyers Squibb/Celgene, Entasis, Janssen, Medtronic, Pfize Samsung Bioepis, Shionogi, Takeda, Techlab, and has received research funding from Pfizer for an unrelated investigator-initiated study.

•JB has received research funding from Janssen. JCP, JLS, and ECF work for Abbott Diagnostics, a company that performed the serological assays on the biospecimens that were collected for this study.

•DM: Bridge Biotherapeutics, Gilead, Palatin, Pfizer, Prometheus Biosciences, Prometheus Laboratories, Takeda.

•MC: Abbvie, Arena, Bristol-Meyers Squibb, Janssen, Medtronic, Pfizer, and Takeda.

•EC: Abbvie and Pfizer.

•DF: Pfizer.

•CH: Abbvie, Janssen and Pfizer.

•DL: Abbvie, Janssen and Takeda

•RM: Abbvie, Pfizer, and Prometheus Bioscience.

•NP: Pfizer.

•DW: Abbvie, Arena, Bristol Meyers Squibb, Corevitas, Janssen, Lilly, Pfizer, and Takeda.

•BM: Abbvie, Bristol Myers Squibb, Janssen, Pfizer and Takeda

SG: Abbvie, Janssen, and Takeda.

•CH: Abbvie, Bristol Meyers Squibb, Genentech, InbDex Pharmaceuticals, Janssen, Lilly, and Pfizer.

•GS: research funding for unrelated investigator study from Pfizer.

•SR: Prometheus Bioscience.

