

The protective role of SARS-CoV-2 T cells

(T cells specific for Non-Structural proteins..polymerase)

Antonio Bertoletti, MD

Program in Emerging Infectious Diseases

DUKE-NUS Medical School

Two arms of adaptive immunity: B and T cells

Cytotoxic T cells recognize infected cell, leading to cell death

CD8 T cell recognize short fragment of viral proteins presented by HLA-Class I molecules

THE ROLE of VIRUS SPECIFIC T CELLS

Virus-specific CD8 and CD4 T cells

SARS-CoV-2

Background

Coordinated induction of humoral and cellular immunity

1 Rydyznski Moderbacher C, *et al.* Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. *Cell* 2020; **183**: 996–1012.e19.

Background

Animal Model of Coronavirus infection:

Zhao J, *et al.* Airway Memory CD4 + T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. *Immunity* 2016; **44**: 1379–1391.

Zhao J, et al.. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. *Journal of Virology* 2010; **84**: 9318–9325.

Background

Convalescent Animals

Rhesus macaques are better protected from re-infection if they have CD8+ T cells

McMahan, K. et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature (2020).

Summary of our studies on SARS-CoV-2 T cells

SARS-CoV-2 T cells detected:

COVID-19 patients Healthy unexposed SARS-convalescent

Le Bert et al. Nature 2020

Early SARS-CoV-2 T cells in acute patients:

Mild disease Rapid clearance

Tan et al. Cell Reports 2021

SARS-CoV-2 T cells in asymptomatic:

Magnitude similar to symptomatic Higher cytokine production

Le Bert *et al.* JEM 2021

Early SARS-CoV-2 T cells in vaccinated:

T cells are induced early after vaccination

Kalimuddin et al. MED 2021

Singapore General Hospital SingHealth

David Lye Mark I-Cheng Chen Jenny Low

Shirin Kalimuddin

Wei Yee Wan

Analyse the dynamic changes of <u>virological</u> and <u>immunological</u> parameters from disease onset to convalescence or death

Aim: Kinetic of adaptive immunity

Singapore General Hospital SingHealth

Aim: Kinetic of adaptive immunity

David Lye Mark I-Cheng Chen Jenny Low

Shirin Kalimuddin

Wei Yee Wan

Analyse the dynamic changes of <u>virological</u> and <u>immunological</u> parameters from disease onset to convalescence or death

Mild: presence of fever or respiratory symptoms but not requiring supplemental oxygen Moderate: requiring oxygen supplementation FiO2<0.5 Severe: requiring oxygen supplementation FiO2>0.5, high flow oxygen and/or mechanical ventilation

Methods

Viral load "+" correlates with disease severity

Dynamics of SARS-CoV-2 specific antibody response

Dynamics of SARS-CoV-2 specific T cell response

T cells

• High frequency SARS-CoV-2 specific T cells is associated with mild disease.

Time of T cell appearance and duration of infection

• Early appearance of virus-specific T cells correlates with a shorter duration of infection.

Conclusions I

- Quantity of virus-specific antibodies positively correlated with COVID-19 severity.
- Quantity of virus-specific T cells is directly associated with mild disease.
 - Early induction of SARS-CoV-2 specific T cells is associated with accelerated viral clearance
 - Delayed induction of low numbers of SARS-CoV-2 specific T cells was seen in severe COVID-19

Early induction of T cells important for control of SARS-CoV-2 infection

T cell response against Non-Structural Proteins Kinetic of SARS-CoV-2 T cell

Quantification of SARS-CoV-2 specific T cells

Not only against Spike or other structural proteins. SARS-CoV-2 overlapping 15-mer peptide library

T cell response to individuals SARS-CoV-2 proteins

ORF7/8 –specific T cells are enriched during the initial phase of infection

Mild/moderate disease

ORF8 antibodies response are accurate serological markers of early SARS-CoV-2 infection. *Hachim et al. Nat Immunol 2020, 21:1293-1301*

Question

• What are the reasons of this different kinetic?

- a) ORF-1 proteins produced first during the viral replication. (??)
- b) Presence of memory CoV specific T cells cross-recognizing SARS-CoV-2 proteins (*Others Coronaviruses? Commensal bacteria?*)

Bartolo et al SARS-CoV-2-specific T cells in unexposed adults display broad trafficking potential and cross-react with commensal antigens BioRxiv https://doi.org/10.1101/2021.11.29.470421

SARS-CoV-2 T cells primed by other Coronaviruses ?

SARS-CoV-1 infected individuals have SARS-coV-2 T cells...same sequence /memory T cells

Le Bert N, Tan A et al. Nature 2020

SARS-CoV-2 T cells primed by other Coronaviruses ?

SARS-CoV-2 T cells also in healthy individuals (tested before 2020)

Le Bert N, Tan A et al. Nature 2020

SARS-CoV-2 T cells primed by other Coronaviruses ?

Characterize the T cell response to SARS-CoV-2 proteins with high homology between different Coronaviruses

Conservation analysis of SARS-CoV-2-derived 15-mer peptides across the Coronaviridae.

T cell response to SARS-CoV-2 structural and non-structural proteins healthy individuals (before 2018)

NSP-12= polymerase necessary for the viral mRNA production

PBMC of healthy individuals test in direct ex vivo Elispot Against different conserved region of SARS-CoV-2 proteins

Questions

Do T cells specific for NSP-12 (Polymerase)-play a role in SARS-CoV-2 control?

Are cross-reactive NSP-12 (Polymerase)-specific T cells protective?

We need exposed individuals (not vaccinated) And samples before and after exposure !

Experiments in Exposed Seronegatives

Maini Lab, UCL Leo Swadling Mariana Diniz Oliver Amin Nathalie Schmidt Gloryanne Aidoo-Micah Anna Jeffery-Smith Stephanie Kucykowicz Sabela Lens Laura Pallett Nekisa Zakeri Alice Burton Jessica Davies

Oli Nater Portonial Control of the second se

UCL Mahdad Noursadeghi Aneesh Chandran Emily Shaw-Wise Laura McCoy Benny Chain

Experiments in Exposed Seronegatives

Experiments in Exposed Seronegatives

T cell analysis with peptides (Elispot and ICS)

wk 14

Exposed individuals have stronger SARS-CoV-2 T cell response than pre-pandemic

Exposed individuals recognize preferentially Polymerase/NSP proteins

Ab-Neg PCR neg

Exposed seronegatives with strong NSP-12-T cell response show blood transcriptomic signature of infection

IFI27 –early transcriptomic signature of COVID-19 infection Gupta et al Lancet Microbe 2020

Aneesh Chandran

In vivo expansion of polymerase-specific T cells in abortive infection

Leo Swalding et al, Nature 2021

Conclusions II

1.Pre-existing cross-reactive T cells possibly (?) induced by closely related coronaviruses can expand upon exposure to SARS-CoV-2.

2. Expansion of Polymerase (NSP-12) T cells is detected in individuals exposed to the virus and with possible abortive infection (initial replication with low production of new virions).

3. T cells recognising the RTC may be particularly effective at **early control** of infection and may offer **pan-coronaviridae reactivity**, arguing for their inclusion and assessment in **next-generation vaccines** HYPOTHETICAL MODEL

Abortive infection?

Hypothesis about early recognition of infected cells before formation of whole virions

Translation and Replication Dynamics of Single RNA Viruses. Cell 2020, Boersma et al

Abortive infection?

Hypothesis about early recognition of infected cells before formation of whole virions

Translation and Replication Dynamics of Single RNA Viruses. Cell 2020, Boersma et al

Abortive infection?

Hypothesis about early recognition of infected cells before formation of whole virions

Translation and Replication Dynamics of Single RNA Viruses. Cell 2020, Boersma et al

Antonio Bertoletti **Christine Tham** Nina Le Bert **Martin Lister** Anthony Tan Wan Ni Chia Kamini Kunasegaran **Ruklanthi de Alwis** Adeline Chia Lin-Fa Wang Morteza Hafezi Eng Ong Ooi Joey Ming Er **Martin Qui** Nicole Tan Smirthi Hariharaputran

Singapore General Hospital SingHealth

> Jenny Low **Shirin Kalimuddin** Wei Yee Wan

Molecular and Cell Biology

Hanna Clapham

ational Universit

of Singapore

Yong Loo Lin School of Medicine

Clarence Tam

Li Yang Hsu

Paul Tambayah

National Centre for Infectious Diseases

David Lye Mark I-Cheng Chen

Nina Le Bert

Gloryanne

LEO

Pattern of SARS-CoV-2-T cell response

T cells

